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A theory of best approximation with interpolatory contraints from a finite-
dimensional subspace M of a normed linear space X is developed. In particular, to
each x # X, best approximations are sought from a subset M(x) of M which depends
on the element x being approximated. It is shown that this ``parametric approxima-
tion'' problem can be essentially reduced to the ``usual'' one involving a certain
fixed subspace M0 of M. More detailed results can be obtained when (1) X is a
Hilbert space, or (2) M is an ``interpolating subspace'' of X (in the sense of [1]).
� 1996 Academic Press, Inc.

1. Introduction

In this section we establish the notation and terminology that is used
throughout. In Section 2 we describe the problem of approximation with
interpolatory constraints from a finite-dimensional subspace M of the
normed linear space X. By using a perturbation technique, we show that
the problem of parametric approximation with interpolatory constraints can
be reduced to ordinary best approximation from a fixed subspace of M.
A general theory of best parametric approximation is developed which
includes existence and characterization theorems, as well as continuity
criteria for the (set-valued) parameter mapping and selection properties of
this mapping.

In Section 3 we specialize X to Hilbert space and deduce some stronger
results. In Section 4 we restrict our attention to interpolating subspaces
[1]. In this case, there is a substantial strengthening of the theory that can
be obtained. In particular, best interpolatory approximations are always
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(strongly) unique, and the parameter mapping is pointwise Lipschitz con-
tinuous. We should note that in the particular case when X=C[a, b] and
M is a Haar subspace of C[a, b], this problem had been considered earlier
by the first author [4]. However, even specialized to this particular situation,
some of the results of the present paper are stronger and more general than
those of [4]. The results of [4] were also extended to ``=-interpolation'' by
Mabizela and Zhong [9].

Let K be a closed convex subset of a normed linear space X. For a given
x # X, the (possibly empty) set of all best approximations to x from K is
defined by

PK (x) :=[ y # K | &x&y&=d(x, K)],

where d(x, K) :=inf[&x&y& | y # K]. K is said to be proximinal (resp.,
Chebyshev) if for each x # X, the set PK (x) is nonempty (resp., a singleton).

Unless otherwise stated, X will always denote a (real) normed linear
space and X* the dual space of all continuous linear functionals on X.

2. The Interpolation Problem

Let M be an n-dimensional subspace of a normed linear space X and
[,1 , ,2 , ..., ,m]/X* be a set of m�n linearly independent functionals. For
each x # X, let

M(x) :=[ y # M | ,i ( y)=,i (x), i=1, 2, ..., m].

Since M(x) is not changed if the ,i are scaled, we may (and will) assume
that &,i &=1 for each i. The elements of M(x) are said to interpolate x
relative to the set [,1 , ,2 , ..., ,m]. Thus an element x0 # M(x) is a best
approximation to x from M(x) provided that

&x&x0&=d(x, M(x)),

and the set of best approximations to x from M(x) is PM(x)(x). Note that,
unlike the standard case of approximating from a fixed set, the set M(x)
that one approximates from depends on the point x being approximated.
Such problems are often called parametric approximation problems and
PM( } )( } ) is called the parameter map. Of course, if x # M, then x # M(x)
and so x is its own best approximation from M(x): PM(x)(x)=[x].

For m elements y1 , y2 , ..., ym in X, we define the determinant

,1( y1) ,1( y2) } } } ,1( ym)

det[,i ( yj )]1�i, j�m := } b b
. . . b } .,m( y1) ,m( y2) } } } ,m( ym)
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Our first result establishes useful conditions each of which is equivalent
to the statement that M(x){< for each x # X.

Lemma 2.1. The following statements are equivalent.

(1) For each x # X, M(x){<;

(2) The set [,1 , ,2 , ..., ,m] is linearly independent over M (i.e.,
�m

1 :i,i ( y)=0 for all y # M implies :i=0 for all i);

(3) There exist elements z1 , z2 , ..., zm in M such that

,i (zj )=$ij :={1
0

if i=j
if i{j ;

(4) There exist elements z1 , z2 , ..., zm in M such that

det[,i (zj)]{0.

Proof. (1) O (2). Assume M(x){< for all x # X. If �m
1 :i,i ( y)=0 for

all y # M, then �m
1 :i,i (x)=0 for all x # X. By linear independence of

[,1 , ,2 , ..., ,m], :i=0 for all i. Thus (2) holds.

(2) O (3). We proceed by induction on m. For m=1, there exists
y # M, so that ,1( y){0. Then y1 :=y�,1( y) # M satisfies ,1( y1)=1. Now
suppose (3) is valid for m=k and [,1 | M , ,2 |M , ..., ,k+1 | M] is linearly
independent. By hypothesis, there exists [ y1 , y2 , ..., yk] in M so that
,i ( yj)=$ij (i, j=1, 2, ..., k). We claim that there exists y # M so that
,i ( y)=0 for i=1, 2, ..., k, and ,k+1( y){0. Otherwise, by [8; p. 421],
,k+1 |M would be a linear combination of ,1 | M , ..., ,k |M , which contradicts
the linear independence of the ,i |M 's. Setting zk+1= y�,k+1( y) and
zi= yi&(,k+1( yi))�(,k+1( y)) y (i=1, 2, ..., k), we see that zi # M for all
i=1, 2, ..., k+1, and

,i (zj)=$ij (i, j=1, 2, ..., k+1).

This completes the induction.

(3) O (4). This is obvious.

(4) O (1). If (4) holds and x # X, the system of equations

:
m

j=1

:j,i (zj)=,i (x) (i=1, 2, ..., m)

has a (unique) solution :1 , ..., :m . Then the element y=�m
j=1 :jzj is in M

and ,i ( y)=,i (x) (i=1, 2, ..., m). That is, y # M(x). This proves (1). K
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Let

X0 :=[x # X | ,i (x)=0 (i=1, 2, ..., m)] (2.1.1)

and

M0 :=M(0)=[ y # M | ,i ( y)=0 (i=1, 2, ..., m)]=M & X0 . (2.1.2)

Lemma 2.2. M0 is an (n&m)-dimensional subspace. In particular,
M0=[0] if m=n.

Proof. Since M is n-dimensional, so is its dual M*. Since
[,1 | M , ..., ,m |M] is linearly independent in M*, there are functionals
[�m+1 , ..., �n] in M* so that [,1 | M , ..., ,m |M , �m+1 , ..., �n] is linearly
independent. By the Hahn-Banach theorem, each �i can be extended to a
,i # X*. Thus [,1 | M , ..., ,m |M , ,m+1 |M , ..., ,n | M] is linearly independent.
By Lemma 2.1, there exists a set [ y1 , y2 , ..., yn] in M so that

,i ( yj)=$ij (i, j=1, 2, ..., n). (2.2.1)

[ y1 , y2 , ..., yn] is clearly linearly independent and hence a basis for M.
Since [ ym+1 , ..., yn] is in M0 by (2.2.1), it follows that dim M0�n&m. On
the other hand, for each y # M0 , y is in M so y=�n

1 :i yi for some scalars
:i . We have for each j�m,

0=,j ( y)= :
m

i=1

:i,j ( yi)=:j .

Thus y=�n
m+1 :iyi so that M0 /span[ ym+1 , ..., yn] and hence dim M0�

n&m. This proves that dim M0=n&m. K

To avoid vacuous or trivial statements, we shall assume hereafter in this
section that M(x){< for each x # X. Thus (by Lemma 2.1) there exists a
linearly independent set [z1 , z2 , ..., zm] in M such that

,i (zj)=$ij (i, j=1, 2, ..., m). (2.2.2)

Fixing such a set [z1 , z2 , ..., zm], we define an operator L: X � M by

Lx=:
m

1

,i (x) zi , x # X. (2.2.3)

It turns out that L is a (linear) projection onto the subspace
span[z1 , z2 , ..., zm].

Lemma 2.3. (1) L is a bounded linear operator.

(2) For each z # span[z1 , z2 , ..., zm], Lz=z.
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(3) L is ``idempotent'', i.e., L2x=Lx for all x.

(4) X0=[x&Lx | x # X]=L&1(0).

(5) X=X0�span[z1 , z2 , ..., zm].

Proof. (1) This is clear.

(2) By linearity, it suffices to show that Lzj=zj for each j=
1, 2, ..., m. But

Lzj= :
m

i=1

,i (zj) zi=zj ( j=1, 2, ..., m).

(3) For each x # X, using (2), we have

L2x=L(Lx)=L \ :
m

i=1

,i (x) zi+=:
m

1

,i (x) Lzi=:
m

1

,i (x) zi=Lx.

(4) Clearly, x # X0 iff ,i (x)=0 for all i iff �m
1 ,i (x) zi=0 (since

[z1 , z2 , ..., zm] is linearly independent) iff Lx=0 iff x # L&1(0). Thus
X0=L&1(0). Let S=[x&Lx | x # X]. If x # S, then x= y&Ly for some
y implies Lx=Ly&L2y=0 by (3). Thus S/L&1(0). Conversely, if
x # L&1(0), then x=x&Lx # S. That is, L&1(0)/S and thus L&1(0)=S.

(5) For each x # X,

x=(x&Lx)+Lx # X0+span[z1 , z2 , ..., zm].

If x # X0 & span[z1 , z2 , ..., zm], then Lx=0 and Lx=x (by (1)). Thus x=0
so that X0 & span[z1 , z2 , ..., zm]=[0]. This proves (5). K

Theorem 2.4. (1) For each x # X,

M(x)=M0+Lx, (2.4.1)

and

PM(x)(x)=PM 0
(x&Lx)+Lx. (2.4.2)

(2) If x # X0 , then

PM(x)(x)=PM 0
(x). (2.4.3)

(3) If m=n, then M(x)=[Lx] and

PM(x)(x)=Lx. (2.4.4)
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Proof. (1) Clearly, Lx # M and ,j (Lx)=�m
1 ,i (x) ,j (zi)=,j (x)

( j=1, 2, ..., m) by (2.2.2). Thus Lx # M(x) and hence x&Lx # X0 .
Moreover, y # M(x) iff y # M and ,i ( y)=,i (x)=,i (Lx) for all i iff y # M
and y&Lx # X0 & M=M0 iff y # M0+Lx. This proves (2.4.1).

From (2.4.1), we obtain

PM(x)(x)=PM0+Lx(x)=PM 0
(x&Lx)+Lx,

which verifies (2.4.2).

(2) If x # X0 , then Lx=0 by Lemma 2.3(4) and (2.4.3) follows from
(2.4.2).

(3) If m=n, M0=[0] by Lemma 2.1 so that M(x)=[Lx] by
part (1). K

The main consequence of Theorem 2.4 is that it shows that the problem
of parametric approximation with interpolatory contraints can be reduced to
an ordinary best approximation problem from the fixed subspace M0 of M.
As we shall see, it also suggests the study of best approximation of the
elements of the subset X0 by elements of the subspace M0 .

Corollary 2.5. (1) PM(x)(x){< for each x # X.

(2) PM(x)(x) is a singleton for each x # X if and only if M0 is a
Chebyshev subspace of X0 .

(3) If X is strictly convex, then PM(x)(x) is a singleton for each x # X.

Proof. (1) This follows from (2.4.2) and the fact that every finite-
dimensional subspace is proximinal.

(2) This is a consequence of Theorem 2.4(1).

(3) This follows from (2) and the fact that all finite-dimensional sub-
spaces of strictly convex spaces are Chebyshev. K

Using Theorem 2.4, a characterization of best approximations to x from
M(x) can be obtained by reducing it to a ``standard'' problem of
approximating from a finite-dimensional subspace.

For any set S, co(S) will denote its convex hull: the intersection of all
convex sets which contain S. The unit ball in X* is denoted by B(X*), the
set of extreme points in B(X*) by ext B(X*), and the set of ``extreme peaking
functionals'' for x # X is defined by

E (x) :=[x* # ext B(X*) | x*(x)=&x&].

Theorem 2.6. Let x # X and y # M(x). Then the following statements are
equivalent.
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(1) y # PM(x)(x);

(2) 0 # co[(x*( y1), x*( y2), ..., x*( yn&m) | x* # E (x&y)], where [ y1 ,
y2 , ..., yn&m] is any basis for M0 ;

(3) There exist k functionals xi* # E (x&y), 1�k�n&m+1, and k
scalars *i>0 such that �k

1 *ixi* # M =

0 .

Proof. From (2.4.2), we see that y # PM(x)(x) iff y&Lx # PM0
(x&Lx).

Now M0 is an (n&m)-dimensional subspace by Lemma 2.2. Applying the
well-known characterization of best approximations (see [10; Theorem 1.1,
p. 170]), we obtain the equivalence of (1) and (3). The equivalence of (2)
and (3) is a consequence of Carathe� odory's theorem. K

Next we show that any continuity property for the set-valued parameter
mapping x [ PM(x)(x) is equivalent to the same property for the metric
projection onto M0 .

For any two nonempty closed and bounded sets A and B in a metric
space Y, define

h(A, B) :=sup
a # A

d(a, B)

and

H(A, B) :=max[h(A, B), h(B, A)].

In other words, H is the Hausdorff metric on the set of all nonempty closed
and bounded subsets of Y.

Recall the following continuity concepts for set-valued maps.

Definition 2.7. Let X, Y be metric spaces, F: X � 2Y"[<] and x0 # X.
Then F is said to be

(1) lower Hausdorff semicontinuous (l.H.s.c.) at x0 if, for any =>0,
there exists a neighborhood U of x0 such that h(F(x0), F(x))<= for all
x # U;

(2) upper Hausdorff semicontinuous (u.H.s.c.) at x0 if, for any =>0,
there exists a neighborhood U of x0 such that h(F(x), F(x0))<= for all
x # U;

(3) Hausdorff semicontinuous (H.s.c.) at x0 if it is both u.H.s.c. and
l.H.s.c. at x0 , i.e., for each =>0, there exists a neighborhood U of x0 such
that H(F(x), F(x0))<= for all x # U;

(4) lower semicontinuous (l.s.c.) at x0 if, for any open set V in Y with
F(x0) & V{<, there exists a neighborhood U of x0 such that
F(x) & V{< for all x # U;
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(5) upper semicontinuous (u.s.c.) at x0 if, for any open set V in Y with
F(x0)/V, there exists a neighborhood U of x0 such that F(x)/V for all
x # U.

It is known (see [7]) that if F(x0) is compact, then F is u.s.c. (resp.,
l.s.c.) at x0 if and only if F is u.H.s.c. (resp., l.H.s.c.) at x0 . Using
Theorem 2.4, it is easy to deduce that PM(x)(x) is a closed and bounded,
hence compact, subset of M. (In fact, &y&�(2+3 &L&) &x& for each
y # PM(x)(x).) Using these remarks, we can prove the next result.

Theorem 2.8. Let x0 # X and {=u, l, u.H, or l.H. Then the following
statements are equivalent.

(1) PM( } )( } ) is {.s.c. at x0 ;

(2) PM0
b (I&L) is {.s.c. at x0 ;

(3) PM0
| X0

is {.s.c. at x0&Lx0 .

Proof. As observed above, PM(x)(x) is compact so l.s.c.=l.H.s.c. (resp.,
u.s.c.=u.H.s.c.). We will prove the equivalence when {=l.H. (=l). The
proof when {=u.H. (=u) is similar.

(1) O (2). Let x # X. If y # PM 0
b (I&L)(x0), then y=z&Lx0 for

some z # PM(x 0)(x0) by (2.4.2). Thus

d( y, PM b (I&L)(x)=d( y, PM(x)(x)&Lx)

=d(z&Lx0 , PM(x)(x)&Lx)

�d(z, PM(x)(x))+&Lx&Lx0&

�h(PM(x 0)(x0), PM(x)(x))+&L& &x&x0&.

Thus

h(PM0
b (I&L)(x0), PM 0

b (I&L)(x))

�h(PM(x 0)(x0), PM(x)(x))+&L& &x&x0&.

Since PM( b )( } ) is l.s.c. at x0 , the right side of this inequality can be made
arbitrarily close to zero by choosing x sufficiently close to x0 . Thus (2)
holds.

(2) O (3). For any x # X,

h(PM 0
(x0&Lx0), PM0

(x&Lx))=h(PM0
b (I&L)(x0), PM0

b (I&L)(x))

which implies the result.
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(3) O (1). Let x # X. If y # PM(x 0)(x0), then y=z+Lx0 for some
z # PM0

(x0&Lx0), and

d( y, PM(x)(x))=d(z+Lx0 , PM0
(x&Lx)+Lx)

�d(z, PM0
(x&Lx))+&Lx&Lx0&

�h(PM0
(x0&Lx0), PM 0

(x&Lx))+&L& &x&x0 &.

Thus

h(PM(x 0)(x0), PM(x)(x))�h(PM 0
(x0&Lx0), PM0

(x&Lx))+&L& &x&x0&.

Since PM0
|X0

is l.s.c. at x0&Lx0 , the right side can be made arbitrarily
close to zero by choosing x close to x0 . This proves that PM( } )( } ) is l.s.c.
at x0 . K

It is well-known that the metric projection onto a finite-dimensional sub-
space is u.s.c. (see [10; Theorem 3.1, p. 386]). Using the equivalence of (1)
and (3) in Theorem 2.8, we immediately obtain the following corollary.

Corollary 2.9. The parameter map PM( } )( } ) is upper semicontinuous
on X.

We conclude this section by showing that the existence of a selection for
PM( } )( } ) having certain continuity properties is equivalent to the existence
of an analogous selection for the (restriction to X0 of the) metric projection
onto M0 .

Recall that a selection for the set-valued mapping F: X � 2Y"[<] is any
function f : X � Y such that f (x) # F(x) for each x # X.

Theorem 2.10. The following statements are equivalent.

(1) PM( } )( } ) has a continuous (resp., linear, Lipschitz continuous)
selection;

(2) PM0
b (I&L) has a continuous (resp., linear, Lipschitz continuous)

selection;

(3) PM0
|X0

has a continuous (resp., linear, Lipschitz continuous) selection.

Proof. Using (2.4.2), it is obvious that f is a selection for PM( } )( } ) iff
f&L is a selection for PM0

b (I&L). Moreover, L is linear, hence Lipschitz
continuous. The equivalence of the three statements now follows easily. K

Various characterizations of which metric projections admit continuous
or Lipschitz continuous selections can be found in [6]. Analogous charac-
terizations for linear selections are in [5].
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3. The Hilbert Space Case

In this section, we obtain stronger and more detailed results in the
special case when X is a Hilbert space.

Our set-up for this section is the following. Let X be a Hilbert space, M
an n-dimensional linear subspace, and let [,1 , ,2 , ..., ,m] be m�n linearly
independent functionals in X*. For each x # X, let

M(x)=[ y # M | ,i ( y)=,i (x) (i=1, 2, ..., m)].

Letting yi # X denote the ``representer'' of ,i , we can rewrite M(x) as

M(x)=[ y # M | (y, yi ) =(x, yi) (i=1, 2, ..., m)]. (3.0.1)

As before, we define

X0 :=[x # X | ,i (x)=0 (i=1, 2, ..., m)]

=[x # X | (x, yi) =0 (i=1, 2, ..., m)]

=(span[ y1 , y2 , ..., ym])= (3.0.2)

and

M0 :=M & X0 . (3.0.3)

Also, as above, we assume that there exists a linearly independent set
[z1 , z2 , ..., zm] in M so that

(zj , yi)=$ij (i, j=1, 2, ..., m), (3.0.4)

and we define L: X � M by

Lx= :
m

i=1

(x, yi) zi , x # X. (3.0.5)

Lemma 3.1. Given x # X, let y0 # M(x). Then y0=PM(x)(x) if and only if
x&y0 # M =

0 .

This is a consequence of the well-known orthogonality characterization
of the error when approximating by subspaces, along with the fact that
M(x)=M0+Lx is just the translate of a subspace.

To apply this lemma in practice, we need to recognize when an element
is in M(x), and when an element is in M =

0 . To this end, we show that if
[zm+1, zm+2 , ..., zn] is any basis of M0 , then [z1 , ..., zm , zm+1 , ..., zn] is a
basis for M.
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To see this, note that Lemma 2.2 implies that M0 is (n&m)-dimensional.
Let [zm+1, ..., zn] be a basis for M0 . In particular, [zm+1 , zm+2 ,
..., zn]/M and

(zi , yj)=0 (i=m+1, m+2, ..., n; j=1, 2, ..., m). (3.1.1)

But by (3.0.4), (zi , yj) =$ij for i, j=1, 2, ..., m. Hence if z # M0 &

span[z1 , z2 , ..., zm], we see that z=�m
1 ;k zk . Thus for j=1, 2, ..., m, since

z # M0 , we have that

0=(z, yj)= :
m

k=1

;k(zk , yj) =;j .

Thus z=0. This proves that

M0 & span[z1 , z2 , ..., zm]=[0]. (3.1.2)

From this we deduce that [z1 , ..., zm , zm+1 , ..., zn] is linearly independent.
[For if �n

1 :izi=0, then

:
m

1

:izi=& :
n

m+1

:izi # M0 & span[z1 , z2 , ..., zn]=[0]

and since [z1 , z2 , ..., zm] and [zm+1 , zm+2 , ..., zn] are each linear inde-
pendent, it follows that :i=0 for all i=1, 2, ..., n.] Since [z1 , ...,
zm , zm+1 , ..., zn] is contained in M and M is n-dimensional, we see that
[z1 , ..., zm , zm+1 , ..., zn] is a basis for M.

Theorem 3.2. Let [ y1 , y2 , ..., ym] be as in (3.0.1) and suppose
[z1 , z2 , ..., zm] in M satisfies (3.0.4). Let [zm+1 , zm+2 , ..., zn] be any basis
of M0 . Then for each x # X,

PM(x)(x)= :
n

m+1

:izi+Lx, (3.2.1)

where Lx=�m
1 (x, yi) zi and the scalars [am+1, :m+2, ..., :n] are the

unique solution to the linear system

:
n

i=m+1

:i(zi , zj) =(x&Lx, zj) ( j=m+1, m+2, ..., n). (3.2.2)

Moreover, if [zm+1 , zm+2 , ..., zn] is an orthonormal basis for M0 , then

:j=(x&Lx, zj) ( j=m+1, m+2, ..., n) (3.2.2$)
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and thus

PM(x)(x)= :
n

m+1

(x&Lx, zj) zj+Lx. (3.2.3)

Proof. Let y0 # M(x). Since M(x)=M0+Lx by Theorem 2.4 (1), it
follows that

y0= :
n

m+1

:i zi+Lx (3.2.4)

for some scalars :i . By Lemma 3.1, y0=PM(x)(x) if and only if x&y0 #
M=

0 . That is,

(x&y0 , zj) =0 ( j=m+1, m+2, ..., n).

It follows that

:
n

i=m+1

:i(zi , zj) =(x&Lx, zj) ( j=m+1, m+2, ..., n). (3.2.5)

Since [zm+1 , zm+2 , ..., zn] is linearly independent, the determinant
det[(zi , zj)]n

i, j=m+1 is not zero (see, e.g., [3; p. 178, Theorem 8.7.2]). This
verifies the first statement of the theorem.

The second statement is an immediate consequence of the first. K

Corollary 3.3. If [ y1 , y2 , ..., ym] is an orthonormal set in M and
[zm+1, zm+2 , ..., zn] is an orthonormal basis for M0 , then for any x # X,

PM(x)(x)= :
n

i=m+1

(x&Lx, zi) zi+Lx, (3.3.1)

where

Lx=:
m

1

(x, yi) yi . (3.3.2)

Proof. From the theorem,

PM(x)(x)= :
n

m+1

(x&Lx, zj) zj+Lx, (3.3.3)

where

Lx= :
m

i=1

(x, yi) zi . (3.3.4)
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But if we choose zi= yi for i=1, 2, ..., m, then [z1 , z2 , ..., zm] is in M and
satisfies (3.0.4). Substituting yi for zi in (3.3.4), we obtain (3.3.1) and
(3.3.2). K

Since, in a Hilbert space, the metric projection onto any closed subspace
M0 is just the (linear) orthogonal projection onto M0 , we obtain the
following consequence of Theorem 2.4 (1).

Corollary 3.4. Under the hypothesis of Theorem 3.2, the parameter
mapping PM( } )( } ) is linear.

(This result also follows indirectly from the equivalence of (1) and (3) in
Theorem 2.10.)

4. Approximation from Interpolating Subspaces

In this section we restrict our attention to approximation from
interpolating subspaces. Using the characterization theorem below
(Theorem 4.5), we show that each x # X has a unique best approximation
in M(x). In fact, the best approximations are actually strongly unique
(Corollary 4.8). Finally, using the strong uniqueness of best approxima-
tions, we prove that the parameter map associated with this problem is
pointwise Lipschitz continuous on X (Theorem 4.9).

Definition 4.1. [1]. An n-dimensional subspace M of a normed linear
space X is called an interpolating subspace if, for each set of n linearly
independent functionals [,1 , ,2 , ..., ,n]�ext B(X*) and each set of n real
scalars c1 , c2 , ..., cn , there is a unique element y # M such that

,i ( y)=ci for i=1, 2, ..., n.

Equivalently, M is an interpolating subspace of X if, whenever [,1 ,
,2 , ..., ,n] is a set of n linearly independent functionals in ext B(X*), y # M,
and ,i ( y)=0 for all i=1, 2, ..., n, then y=0.

The notion of interpolating subspace was introduced by Ault, Deutsch,
Morris, and Olson [1] as a generalization of the classical Haar subspace
in C[a, b]. In C0(T ), T a locally compact Hausdorff space, the interpolat-
ing subspaces are precisely the Haar subspaces [1]. However, interpolating
subspaces are rare in general. Wulbert [11] observed that if X is a smooth
normed linear space, then the best approximations in a Chebyshev
subspace of X are not strongly unique. In [1] it was shown that if M is an
interpolating subspace of a normed linear space X, then M is a Chebyshev
subspace and best approximations are strongly unique. It thus follows that
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a smooth normed linear space does not contain any interpolating subspace.
In the case where (T, +) is a _-finite positive measure space, then L1(T, +)
contains an interpolating subspace of dimension n>1 if and only if T is the
union of at least n atoms; while L1(T, +) contains a one-dimensional inter-
polating subspace if and only if T contains an atom [1]. In particular, the
space l1 contains interpolating subspaces of every dimension n�1.

Let M be an n-dimensional interpolating subspace of X, and fix a set
[,1 , ,2 , ..., ,m] of m linearly independent functionals in ext B(X*), where
1�m�n. As before, for each x # X, let

M(x) :=[ y # M | ,i (x)=,i ( y), i=1, 2, ..., m].

Note that if m=n, then M(x) is a singleton for each x # X. We shall hence-
forth assume that m<n. Recall that

X0 :=[x # X | ,i (x)=0 (i=1, 2, ..., m)]

and

M0 :=M & X0=[x # M | ,i (x)=0 (i=1, 2, ..., m)].

Lemma 4.2. There exist m elements z1 , z2 , ..., zm in M such that

,i (zj)=$ij (i, j=1, 2, ..., m). (4.2.1)

Proof. Since M is interpolating, for each j=1, 2, ..., m, and scalars
c1=$1j , c2=$2j , ..., cm=$mj , there exists a unique zj # M so that ,i (zj)=ci

(i=1, 2, ..., m). That is, (4.2.1) holds. K

Lemma 4.3. M0 is an (n&m)-dimensional interpolating, hence
Chebyshev, subspace in X0 .

Proof. By Lemma 2.2, M0 is an (n&m)-dimensional subspace of X0 . It
remains to show it is interpolating in X0 . Let [�m+1 , �m+2 , ..., �n] be
linearly independent in ext B(X0*), y0 # M0 , and �i ( y0)=0 for i=m+1,
m+2, ..., n. We must show y0=0. By [10; p. 168], each �i can be extended
to an element ,i # ext B(X*) (i=m+1, m+2, ..., n).

Claim. [,1 , ..., ,m , ,m+1 , ..., ,n] is linearly independent (in ext B(X*)).

To see this, let �n
1 :i,i=0. Then for all y # X0 , ,i ( y)=0 for i=1,

2, ..., m, and

0=:
n

1

:i ,i ( y)= :
n

m+1

:i,i ( y)= :
n

m+1

:i�i ( y).
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Since [�m+1 , �m+2 , ..., �n] is linearly independent in X0*, it follows that
:i=0 for i=m+1, m+2, ..., n. Thus �m

1 :i ,i=0. By Lemma 4.2, for each
j=1, 2, ..., m,

0=:
m

1

:i,i (zj)=:j .

Thus :i=0 for i=1, 2, ..., m. This proves the claim.
From the claim it follows that [,1 , ,2 , ..., ,n] is linearly independent in

ext B(X*). Since y0 # M0 , ,i ( y0)=0 for i=1, 2, ..., m. But by assumption,
�i ( y0)=0 for i=m+1, m+2, ..., n. Thus, ,i ( y0)=0 for i=m+1,
m+2, ..., n. Since y0 # M and M is interpolating, y0=0. K

In contrast to Lemma 4.3 the following example shows that, in general,
M0 is not interpolating in the whole space X.

Example 4.4. Let X=C[0, 1], M=P2=span[1, t, t2] be the subspace
of C[0, 1] of all algebraic polynomials of degree at most 2, and define ,1

and ,2 on C[0, 1] by ,1( f )=f (0) and ,2( f )=f (1) for all f # C[0, 1].
Then

M0=M(0)=[ p # P2 | p(0)=p(1)=0]=span(t2&t).

Clearly, M0 is a one-dimensional subspace of C[0, 1]. The element
p(t)=t(t&1) belongs to M0 , and has two zeros in the interval [0, 1].
Thus M0 is not a Haar subspace of C[0, 1], and consequently, M0 is not
an interpolating subspace of C[0, 1].

Let [ y1 , y2 , ..., yn&m] be a basis for M0 and choose [z1 , z2 , ..., zm] in M
as in Lemma 4.2. Then [z1 , z2 , ..., zm] is clearly linearly independent so it
can be augmented by elements zm+1, zm+2, ..., zn so that [z1 , z2 , ..., zn] is
a basis for M. We define L: X � M by

Lx= :
m

i=1

,i (x) zi .

Just as in Section 2, for each x # X, Lx # M(x) and

PM(x)(x)=[PM0
b (I&L)+L](x).

For any set of n&m+1 linearly independent functionals [�1 , �2 , ...,
�n&m+1] in X*, we define the determinants 2i=2i (�1 , �2 , ..., �n&m+1) by
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2i := }
�1( y1)
�1( y2)

} } }
�1( yn&m)

} } }
} } }

} } }

�i&1( y1)
�i&1( y2)

�i&1( yn&m)

�i+1( y1)
�i+1( y2)

�i+1( yn&m)

} } }
} } }

} } }

�n&m+1( y1)
�n&m+1( y2)

�n&m+1( yn&m) } .
We also recall

E (x) :=[, # ext B(X*) | ,(x)=&x&].

The following theorem characterizes best approximations to any x # X
from M(x).

Theorem 4.5. Let x # X and y0 # M(x). Then the following statements
are equivalent.

(1) y0 # PM(x)(x);

(2) y0&Lx # PM0
(x&Lx);

(3) 0 # co[(x*( y1), x*( y2), ..., x*( yn&m)) | x* # E (x&y0)];

(4) There exist n&m+1 linearly independent functionals �i #
E (x&y0) such that

sgn(2i)=(&1) i+1 sgn(21) (i=1, 2, ..., n&m+1);

(5) There exist n&m+1 linearly independent functionals �i # E (x&y0)
and n&m+1 nonzero scalars *i such that

(a) �n&m+1
1 *i�i # M =

0 , and

(b) sgn[*1�1(x&y0)]= } } } =sgn[*n&m+1�n&m+1(x&y0)].

Proof. The equivalence of (1) and (2) (resp., (1) and (3)) follows from
Theorem 2.4 (1) (resp., Theorem 2.6). The equivalence of (1), (4), and (5)
is a consequence of Lemma 4.3 and [1; Theorem 4.1]. K

Remark. In Theorem 4.5, we can replace the set E (x&y0) by the
(subset)

[, # ext B(X*0) | ,(x&y0)=&x&y0&].

This is a subset of E (x&y0) since each , # ext B(X*0) may be extended to
a functional in ext B(X*). But the restriction of a functional in ext B(X*)
to X0 is not necessarily in ext B(X*0).

Corollary 4.6. Each x # X has a unique best approximation in M(x).
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Proof. This follows since M0 is interpolating in X0 by Lemma 4.3,
hence is Chebyshev in X0 by [1; Theorem 2.2], and Corollary 2.5 (2). K

Actually, the best approximation to x from M(x) is ``strongly unique'' in
the sense described below.

Theorem 4.7 [1, Theorem 6.1]. Let Y be an interpolating subspace of
X. Then for each x # X, there exists a scalar #=#(x) # (0, 1] such that

&x&y&�&x&PY (x)&+# &PY (x)&y& (4.7.1)

for all y # Y.

Corollary 4.8 (Strong Uniqueness of Best Approximations). For each
x # X, there exists %=%(x) # (0, 1] such that

&x&y&�&x&PM(x)(x)&+% &PM(x)(x)&y& (4.8.1)

for all y # M(x).

Proof. By Lemma 4.3, M0 is an interpolating subspace in X0 . Since
x&Lx # X0 for each x # X, and y&Lx # M0 for each y # M(x), it follows by
Theorem 4.7 that there exists %=%(x) # (0, 1] so that

&x&Lx&( y&Lx)&�&x&Lx&PM0
(x&Lx)&

+% &PM0
(x&Lx)&( y&Lx)&.

for each y # M(x). Using (2.4.2), this is equivalent to (4.8.1). K

Finally, we show that the parameter map is pointwise Lipschitz con-
tinuous. Recall that a mapping f from one normed linear space X into
another Y is said to be pointwise Lipschitz continuous at x # X if there is a
constant *=*(x)>0 such that

& f (x)&f ( y)&�* &x&y& for all y # X.

It is well-known, and easy to prove (see [2; p. 82, Freud's theorem]) that
strong uniqueness of best approximations from a Chebyshev subspace
implies the pointwise Lipschitz continuity of its metric projection at each
point. By Lemma 4.3, M0 is an interpolating subspace in X0 . Hence, by
Theorem 4.7, best approximations from M0 to each x # X0 are strongly
unique. It follows that for each x # X0 , there exists *=*(x)>0 so that

&PM0
(x)&PM0

( y)&�* &x&y& (4.8.2)
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for all y # X0 . By Lemma 2.3, x&Lx is in X0 for each x # X. Thus for each
x # X and *$ :=*$(x) :=*(x&Lx), we deduce

&PM0
(x&Lx)&PM0

( y&Ly)&�*$ &x&Lx&( y&Ly)& (4.8.3)

for each y # X. By Theorem 2.4 (2), we see that

&PM(x)(x)&PM( y)( y)&=&PM0
(x&Lx)+Lx&[PM0

( y&Ly)+Ly]&

�&PM0
(x&Lx)&PM0

( y&Ly)&+&Lx&Ly&

�*$ &x&Lx&( y&Ly)&+&Lx&Ly&

�*$ &x&y&+(*$+1) &Lx&Ly&

�+(x) &x&y&,

where +(x)=*$(x)+(*$(x)+1) &L&.
Thus we have proved the following.

Theorem 4.9. The parameter map PM( } )( } ) is pointwise Lipschitz
continuous on X. That is, for each x # X, there exists a constant +(x)>0 such
that

&PM(x)(x)&PM( y)( y)&�+(x) &x&y& (4.9.1)

for all y # X.

In the special case when M is a Haar subspace in X=C[a, b], it was
proved in [4] that (4.9.1) holds for those y # C[a, b] which satisfy the
additional restriction: M( y)=M(x). Thus Theorem 4.9 shows that this
additional restriction in [4] may be omitted.
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